If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+34k-7=0
a = 5; b = 34; c = -7;
Δ = b2-4ac
Δ = 342-4·5·(-7)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-36}{2*5}=\frac{-70}{10} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+36}{2*5}=\frac{2}{10} =1/5 $
| 0.5×p=p+5 | | (4x+1)/(3)=11 | | 17-b=11 | | (1/7)^2x=49 | | 13z=-1 | | -5.6=x/5+12.2 | | 60=4k+12+2k-12 | | (1/7)^2x=1/49 | | 9+t/7=-3 | | 5/2(2x+4)+6(x+2=33 | | -18×x=-54 | | -6x+5(0)=30 | | 60=4(k+3)+2((k-3) | | 1x+9=-50 | | 4+10x=6x-12 | | 1/7*x=1 | | 4+3g=18 | | 9/t=3/7 | | 0.15d=2.10 | | 1/6x-31/3=1/2x+3 | | 100t+50(4t)+5(4t+20)=6,500 | | 120+20x=35 | | 14+6a-8=1 | | 4x^2+9x^2=36 | | 4-3x=8-4 | | 6x-31/3=21/2x+3 | | 42=3(2–3h) | | -9(v+4)+3v+6=8v+12 | | 2(8q-5)=4q | | 6x+450=7(50+x) | | 1.2=2x-2.8 | | (y/4)+8=-3 |